Open-access mathematical research insights
About Contact
Home / Erdos Problems / Problem #28

Problem #28: If $A\subseteq \mathbb{N}$ is such that $A+A$ contains all...

If $A\subseteq \mathbb{N}$ is such that $A+A$ contains all but finitely many integers then $\limsup 1_A\ast 1_A(n)=\infty$.

Problem Statement

If $A\subseteq \mathbb{N}$ is such that $A+A$ contains all but finitely many integers then $\limsup 1_A\ast 1_A(n)=\infty$.
Categories: Number Theory Additive Basis

Progress

Conjectured by Erdős and Turán. They also suggest the stronger conjecture that $\limsup 1_A\ast 1_A(n)/\log n>0$.

Another stronger conjecture would be that the hypothesis $\lvert A\cap [1,N]\rvert \gg N^{1/2}$ for all large $N$ suffices.

Erdős and Sárközy conjectured the stronger version that if $A=\{a_1<a_2<\cdots\}$ and $B=\{b_1<b_2<\cdots\}$ with $a_n/b_n\to 1$ are such that $A+B=\mathbb{N}$ then $\limsup 1_A\ast 1_B(n)=\infty$.

See also [40].

This is discussed in problem C9 of Guy's collection [Gu04].

Source: erdosproblems.com/28 | Last verified: January 13, 2026

Stay Updated

Get weekly digests of new research insights delivered to your inbox.